
Änderung Datum Vis.: Typ: Basics Nr.: 1 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

Introduction

The Modbus protocol was originally developed by Modicon (nowadays Schneider Electric) for the data transfer with their
controllers. Data transfer was organized in terms of 16-Bit registers (integer format) or as status information in terms of data
bytes. Over the years the protocol was extended and has been adopted by other manufacturers as well. New data types were
added, especially to achieve a higher resolution for values to transmit. The protocol was adopted for new transfer media,
dialects like Modbus Plus or Modbus/TCP arised.

But for compatibility reasons the basic structure of the data area or the addressing mechanism of the protocol retained.

The Modbus protocol is in fact a single master protocol. The master controls the complete transmission and monitors if possible
timeouts (no answer from the addressed device) occur. The connected devices are slaves and are allowed to send telegrams
only on master request.

The following basics are limited to the protocols Modbus/RTU and Modbus/TCP. Also only functions supported by Modbus
devices of the company Camille Bauer are described.

Contents

1. Modbus/RTU protocol..2

1.1 Transmission mode...2

1.2 General message form ...2

1.3 Data types ...3

1.4 Data addressing..3

1.5 Cyclic redundancy check calculation (crc16) (Example in ‘C)’ ..3

1.6 Error handling ...4

1.7 Telegram examples ..4

2. Modbus/TCP protocol ..7

2.1 Generic telegram types...7

2.2 Communication management...7

2.3 Error handling ...8

2.4 Telegram examples ..8

MODBUS® - Modbus is a registered trade mark of Schneider Electric. Detailed protocol specifications are available via the
Website http://www.modbus.org

Änderung Datum Vis.: Typ: Basics Nr.: 2 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

1. Modbus/RTU protocol

1.1 Transmission mode

Character format: Normally configurable

 1 start, 8 data, even parity, 1 stop bit

 1 start, 8 data, odd parity, 1 stop bit

 1 start, 8 data, no parity, 2 stop bit

 1 start, 8 data, no parity, 1 stop bit (often used but not in accordance with MODBUS specification)
Baudrate: Normally configurable, often used values are
 1200, 2400, 4800, 9600 and 19200 Bd

1.2 General message form

Device address Function Data CRC check

8 bits 8 bits n * 8 bits 16 bits

The MODBUS® specification defines a silent-interval (Pause) of at least 3.5 chars between two telegrams to transmit. Within a
message two chars may be separated for not more than 1.5 chars. A typical data transmission looks like:

 Telegram 2Telegram 1 Telegram 3Pause Pause Pause etc.
Note: The monitoring of the given interval times is extremely complicated for the master. In particular Windows operating systems are

not suited for such circumstances. Therefore in practice often much longer character intervals are accepted. But this may induce
problems during device addressing, because the message framing can get lost. The receiver of the message may misinterpret
data to be the beginning of a telegram.

Device Address
The device which has to be accessed (Master→Slave communication) or the responding device (Slave→Master
communication). Modbus allows addresses in the range 1..247. The address 0 may be used for broadcast messages to all
devices, if the selected function supports this.

Function
Defines the purpose of data transmission. The following standard function are supported by Camille Bauer devices:

Code MODBUS-Function Register Application examples...
01H READ COIL STATUS 0xxxx - Reading digital output states
02H READ INPUT STATUS 1xxxx - Reading digital input states
03H READ HOLDING REGISTERS 4xxxx - Reading measurands, meters, mean-values

- Reading the device configuration
08H DIAGNOSTIC - Device connection test (subfunction 0)
0FH FORCE MULTIPLE COILS 0xxxx - Setting / Simulating digital output states
10H PRESET MULTIPLE REGISTERS 4xxxx - Device configuration

Data
Contains the information to transmit. This field is divided into register, number of registers to transmit and, if necessary, read
data or information to store. Data is normally transmitted as a multiple of 16 bit registers.

CRC check
The CRC16 checksum is calculated for all byte of a telegram. It is calculated by the receiver of the message as well to detect
possible transmission errors. The CRC calculation is shown in chapter 1.5

Änderung Datum Vis.: Typ: Basics Nr.: 3 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

1.3 Data types

- Standardized data types are Byte (8-Bit) and Register (16-Bit). According to the Modbus specification registers are
transmitted with the high byte first, followed by the low byte.

- Extended data types: 32-Bit-Integer and 32-Bit-Float are transmitted as 2 consecutive 16-Bit registers. 64-Bit-Integer and
64-Bit-Float are transmitted as 4 consecutive 16-Bit registers. The format of the float numbers is in accordance with IEEE
standard 754. But the transmission sequence of the registers is not fixed. In most applications it works as follows:

32-Bit numbers Reg_L (Bit 15..0) Reg_H (Bit 31..16)
 HByte LByte HByte LByte

64-Bit numbers Reg_L (15..0) Reg_H (31..16) Reg_L (47..32) Reg_H (63..48)
 HByte LByte HByte LByte HByte LByte HByte LByte
Transmission sequence 1. 2. 3. 4. 5. 6. 7. 8.

1.4 Data addressing

Modbus groups different data types as references. The telegram functions 03H and 10H e.g. use register addresses starting at
40001. The reference 4xxxx is implicit, i.e. is given by the used telegram function. In addressing therefore the leading 4 is
omitted. The reference is also not given in most Modbus descriptions.

Another speciality in Modbus telegrams is, that the register numeration starts at 1, but the addressing starts at 0. So if e.g. you
want to read register 40001 the address in the telegram will be 0. This can also be seen in detail in the telegram examples.

1.5 Cyclic redundancy check calculation (crc16) (Example in ‘C)’

The calculation is performed on all message characters, except the check bytes itself. The low-order byte (Crc_LByte) is
appended to the message first, followed by the high-order byte (Crc_HByte). The receiver of the message calculates the check
bytes again and compares them with the received ones.

void main()
{

unsigned char data[NUMDATA+2]; // Message buffer
unsigned char Crc_HByte,LByte; //
unsigned int Crc;
....
Crc=0xFFFF;
for (i=0; i<NUMDATA; i++) {
 Crc = CRC16 (Crc, data[i]);
}
Crc_LByte = (Crc & 0x00FF); // Low byte calculation
Crc_HByte = (Crc & 0xFF00) / 256; // High byte calculation

}
// CRC16 calculation
// ----------------
unsigned int CRC16(unsigned int crc, unsigned int data)
{
 const unsigned int Poly16=0xA001;
 unsigned int LSB, i;

 crc = ((crc^data) | 0xFF00) & (crc | 0x00FF);
 for (i=0; i<8; i++) {
 LSB=(crc & 0x0001);
 crc=crc/2;
 if (LSB)
 crc=crc^Poly16;
 }
 return(crc);
}

Änderung Datum Vis.: Typ: Basics Nr.: 4 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

1.6 Error handling

If a transmission error occurs, i.e. if the CRC-16 calculated by the recipient doesn't match the received one, no answer
will be sent to the master. This way a timeout will be provoked. The same happens if a non-existing or switched-off
device will be addressed.

If the recipient of a message detects another error, it sends back a corresponding error message to the master.

 Device answer:
 Address Code Data Check sum
 LByte HByte
 11H Code+80H Error code CRC16

The function code received will be sent back. However, the most significant bit (MSB) of the function code will be set. The error
code indicates an operating or a programming error. The following error codes are supported:

 Error code Meaning

 01H The used function code is not supported

 02H The register address used is not allowed. The register address may be invalid or write-protected.

 03H Some data values used are out of range, i.e. invalid number of registers.

 06H Device can not handle the request at the moment. Repeat the request.

1.7 Telegram examples

Function 01H : READ COIL STATUS

Example: Request the (digital) output states 2 to 11 of device 17. These are 10 states, which can be mapped within
2 data bytes.

Request Address Function Data CRC check
Master->Slave Start address Number of states
 addr 01H High-Byte Low-Byte High-Byte Low-Byte crc16

Answer Address Function Data CRC check
Slave->Master Number of data bytes States 9..2 States 11..10
 addr 01H 8 Bit 8 Bit 8 Bit crc16

Example (Hex): >>>> 11 01 00 01 00 0A crc_l crc_h

 <<<< 11 01 02 11 01 crc_l crc_h

 11H=00010001B: Output 6,2 ON; Output 9,8,7,5,4,3 OFF

 01H=00000001B: Output 10 ON; Output 11 OFF

Note: Start address 2 is accessed as register 1 in accordance with the MODBUS specification

Änderung Datum Vis.: Typ: Basics Nr.: 5 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

Function 02H : READ INPUT STATUS

Example: Request the (digital) input states 4 to 17 of device 17. These are 14 states, which can be mapped within
2 data bytes.

Request Address Function Data CRC check
Master->Slave Start address Number of states
 addr 02H High-Byte Low-Byte High-Byte Low-Byte crc16

Answer Address Function Data CRC check
Slave->Master Number of data bytes States 11..4 States 17..12
 addr 02H 8 Bit 8 Bit 8 Bit crc16

Beispiel (Hex): >>>> 11 02 00 03 00 0D crc_l crc_h

 <<<< 11 02 02 2D 3C crc_l crc_h

 2DH=00101110B: Input 9,7,6,5 ON; Input 11,10,8,4 OFF

 3CH=00111100B: Input 17,16,15,14 ON; Input 13,12 OFF

Note: Start address 4 is accessed as register 3 in accordance with the MODBUS specification

Function 03H : READ HOLDING REGISTERS

Example: Request a float number(32-Bit) on register addresses 108 and 109 of device 17

Request Address Function Data CRC check
Master->Slave Start address Number of registers
 addr 03H High-Byte Low-Byte High-Byte Low-Byte crc16

Answer Address Function Data CRC check
Slave->Master Number of data bytes Information
 addr 03H n (8 Bit) n/2 registers crc16

Example (Hex): >>>> 11 03 00 6B 00 02 crc_l crc_h

 <<<< 11 03 04 CC CD 42 8D crc_l crc_h

Note: Start address 108 is accessed as register 107 in accordance with the MODBUS specification

Function 08H : DIAGNOSTICS

Example: Using Subfunction 00 (Diagnostic) a test is performed if device 17 is connected. The telegram sent will
be sent back 1:1.

Request Address Function Data CRC check
Master->Slave Subfunktion Data
 addr 08H 0 0 High-Byte Low-Byte crc16

Answer Address Function Data CRC check
Slave->Master Subfunktion Data
 addr 08H 0 0 High-Byte Low-Byte crc16

Example (Hex): >>>> 11 08 00 00 AA 55 crc_l crc_h

 <<<< 11 08 00 00 AA 55 crc_l crc_h

Änderung Datum Vis.: Typ: Basics Nr.: 6 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

Function 0FH : FORCE MULTIPLE COILS

Example: Set the (digital) output states 30..46 of device 17. These are 17 states, which fit within 3 data bytes.
Request Address Function Data CRC check
Master->Slave Start address Number of

states
Number of

bytes
Information

 addr 0FH High Low High Low n n Bytes crc16

Answer Address Function Data CRC check
Slave->Master Start address Number of states
 addr 0FH High Low High Low crc16

Beispiel (Hex): >>>> 11 0F 00 1D 00 11 03 AC 38 01 crc_l crc_h

 <<<< 11 0F 00 1D 00 11 crc_l crc_h

 ACH=10101100B: Output 37,35,33,32 ON; Output 36,34,31,30 OFF

 38H=00111000B: Output 43,42,41 ON; Output 45,44,40,39,38 OFF

 01H=00000001B: Output 46 ON;

Note: Start address 30 is accessed as register 29 in accordance with the MODBUS specification

Function 10H : PRESET MULTIPLE REGISTERS

Supports Broadcast. Via Address 0 an action may be performed for all devices at the same time. This kind of telegrams
is not acknowledged. Typical application: Setting the display brightness of all devices.

Example: Set a long integer number (32-Bit) on register addresses 302 and 303 of device 17.
Request Address Function Data CRC check
Master->Slave Start address Number of

registers
Number of

bytes
Information

 addr 10H High Low High Low n n Bytes crc16

Answer Address Function Data CRC check
Slave->Master Start address Number of registers
 addr 10H High Low High Low crc16

Example (Hex): >>>> 11 10 01 2D 00 02 04 00 0A 01 02 crc_l crc_h

 <<<< 11 10 01 2D 00 02 crc_l crc_h

Note: Start address 302 is accessed as register 301 in accordance with the MODBUS specification

Änderung Datum Vis.: Typ: Basics Nr.: 7 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

2. Modbus/TCP protocol

2.1 Generic telegram types
The ADU (Application Data Unit) of the Modbus over TCP/IP protocol is composed of the following parts

MBAP Header Function code Data

7 Bytes 1 Byte n Bytes

MPAP Header (Modbus Application Protocol Header)

Byte 0,1: transaction identifier - Identification number if multiple requests are pending.

Byte 2,3: protocol identifier - always set to 0 (=Modbus protocol)

Byte 4: Number of data bytes following (high byte) - always 0 (because all messages are shorter than 256 bytes)

Byte 5: Number of data bytes following (high byte)

Byte 6: unit identifier (previous ‘device address’). The device is accessed directly via IP address, therefore this parameter
has no function and may be set to 0xFF. Exception: If the communication is performed via gateway the device
address must be set as before.

Function code
Byte 7: Function code of the standard MODBUS protocol. See chapter 1.2

Data
Byte 8..n: The data area corresponds to the standard MODBUS protocol (see chapter 1). The CRC checksum is no longer

necessary because this part is implemented on TCP/IP protocol level.

2.2 Communication management

The Modbus communication requires to establish a TCP connection between a client (e.g. PC) and a server (device). Normally
TCP-Port 502 is used, which is reserved for Modbus communication. However, the user is free to set another port number. A
server normally accepts an additional connection via port 502, besides the configured port.

If a firewall is arranged between server and client you have to ensure that the configured TCP port is released.

It is also possible to use a Modbus RTU/TCP gateway as server to which up to 32 devices can be serially connected. This
allows to connect Modbus/RTU devices directly to the Ethernet without the need to modify the firmware. However, this cost-
effective solution reduces the transmission speed to the baudrate of the serial bus.

Änderung Datum Vis.: Typ: Basics Nr.: 8 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

2.3 Error handling

If a transmission error occurs, i.e. if the CRC-16 calculated by the recipient doesn't match the received one, no answer
will be sent to the master. This way a timeout will be provoked. The same happens if a non-existing or switched-off
device will be addressed. If you use an interconnected Modbus RTU/TCP gateway you will receive an error message if
the accessed device gives no response.

If the recipient of a message detects another error, it sends back a corresponding error message to the master.

 Device answer:

MBAP Header Function code Data

Copy of the request Code+80H error code

The function code received will be sent back. However, the most significant bit (MSB) of the function code will be set. The error
code indicates an operating or a programming error. The following error codes are supported:

 Error code Meaning

 01H The used function code is not supported

 02H The register address used is not allowed. The register address may be invalid or write-protected.

 03H Some data values used are out of range, i.e. invalid number of registers.

 06H Device can not handle the request at the moment. Repeat the request.

 0BH Error message of the interconnected gateway: No response of the accessed device.

2.4 Telegram examples

Function 03H : READ HOLDING REGISTERS

Request: Read a float number (32-Bit) on register addresses 108 and 109 of device 17

Request Transact. Protocol Number of unit Function Data
Client->Server identifier identifier Data bytes identifier Start address Number of registers
 0x00 tno 0x00 0x00 0x00 0x06 0xFF 03H High-Byte Low-Byte High-Byte Low-Byte

Answer Transact. Protocol Number of unit Function Daten
Server->Client identifier identifier Data bytes identifier Number of data bytes Information
 0x00 tno 0x00 0x00 0x00 n+3 0xFF 03H n n/2 Register

Example (Hex) >>> 00 00 00 00 00 06 FF 03 00 6B 00 02

 <<< 00 00 00 00 00 07 FF 03 04 CC CD 42 8D

Note: Start address 108 is accessed as register 107 in accordance with the MODBUS specification. If communication is
performed via gateway the unit identifier must be set to the device address (17).

tno = Identifikation number if more than request is pending

Änderung Datum Vis.: Typ: Basics Nr.: 9 / 9 gez.: 03.08.06 RR

 Bezeichnung: MODBUS Zeichnr.: W2417e

Function 08H : DIAGNOSTICS

Example: Using Subfunction 00 (Diagnostic) a test is performed if device 17 is connected. The telegram sent will
be sent back 1:1.

Request Transact. Protocol Number of unit Function Data
Client->Server identifier identifier Data bytes identifier Subfunction Data
 0x00 tno 0x00 0x00 0x00 0x06 0xFF 08H 0x00 0x00 High-Byte Low-Byte

Answer Transact. Protocol Number of unit Function Data
Server->Client identifier identifier Data bytes identifier Subfunction Data
 0x00 tno 0x00 0x00 0x00 0x06 0xFF 03H n High-Byte Low-Byte

Example (Hex) >>> 00 00 00 00 00 06 FF 08 00 00 AA 55

 <<< 00 00 00 00 00 06 FF 08 00 00 AA 55

Note: If communication is performed via gateway the unit identifier must be set to the device address (17).

Function 10H : PRESET MULTIPLE REGISTERS

Example: Set a long integer number (32-Bit) on register addresses 400 and 401 of device 17.
Request Transact. Protocol Number of unit Function Data
Client->Server identifier identifier Data bytes identifier Start addr. #Reg. #Bytes Info
 0x00 tno 0x00 0x00 0x00 n+7 0xFF 10H High Low High Low n n Bytes

Answer Transact. Protocol Number of unit Function Data
Server->Client identifier identifier Data bytes identifier Start address Numb. registers
 0x00 tno 0x00 0x00 0x00 0x06 0xFF 10H High-Byte Low-Byte High-Byte Low-Byte

Example (Hex) >>> 00 00 00 00 00 0B FF 10 01 8F 00 02 04 d2 d1 d4 d3

 <<< 00 00 00 00 00 06 FF 10 01 8F 00 02

Note: Start address 400 is accessed as register 399 in accordance with the MODBUS specification. If communication is
performed via gateway the unit identifier must be set to the device address (17).

tno = Identifikation number if more than request is pending

